The Proposal of Magnetic Suspension Using Laterally Control Flux-Path Mechanism

نویسندگان

  • Naoki Ishibashi
  • Takeshi Mizuno
  • Yuji Ishino
  • Daisuke Yamaguchi
  • Masayuki Hara
  • Masaya Takasaki
  • Kazuki Yamada
چکیده

A novel flux control magnetic suspension system that places control plates beside the magnetic source (permanent magnet) is proposed. In a conventional flux-path control magnetic suspension system, the control plates were inserted between the magnetic source and the suspended object (floator). In contrast, the control plates were placed beside the magnetic source in the proposed system. In such a configuration, the effective gap becomes larger than in the conventional system. Basic characteristics of the proposed magnetic suspension system were studied both numerically and experimentally. The numerical analyses show that the attractive force acting on the floator increases as the position of the lateral ring-shape control plate increases. The variation of the attractive force is sufficient for the stabilization of the suspension system. It is also shown that lateral force can be generated by dividing the plates into halves and moving them differentially. The predicted characteristics are confirmed experimentally in a fabricated apparatus with a three-axis force sensor and a gap adjustment mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor

A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage ...

متن کامل

Effects of the sintering temperature on the flux-pinning mechanism and the activation energy of malic-acid doped MgB2

  The flux-pinning mechanism and activation energy of 10 wt % malic acid-doped MgB2 were investigated by measuring of the critical current density and resistivity as a function of magnetic field and temperature. A crossover field, Bsb, was observed from the single vortex to the small vortex bundle pinning regime. For the sintered sample, the temperature dependence of Bsb(T) at low temperature i...

متن کامل

Decoupling Suspension Controller Based on Magnetic Flux Feedback

The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system mod...

متن کامل

Analysis and Simulation of Axial Flux Switched Reluctance Motor with Modified Stator Structure in Static and Dynamic Conditions

In this paper, a new structure of axial flux switched reluctance motors (AFSRMs) is proposed. Different combinations of rotors and stators affect motor torque and its performance. In this regard, changing the stator structure of the AFSRM leads to better results for torque and magnetic flux. The advantages of the proposed structure are short flux path, segmental rotor with improved flux density...

متن کامل

Stator-Flux-Based Vector Control of Induction Machines in Magnetic Saturation

In many variable-torque applications of induction machines, it is desirable to operate the machine at high flux levels, thus allowing the machine to produce higher torques. This can lead to saturation of the main flux path, introducing crosscoupling effects which can severely disrupt the performance of controllers dependent on knowledge of the machine’s magnetic parameters. Stator-flux-oriented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017